Zero Bubble Pipeline Parallelism

Penghui Qi, Xinyi Wan, Guangxing Huang, Min Lin

(Paper Presented by Aydan Pirani)



Parallelism Techniques

e Training large models often requires a vast amount of interconnected GPUs

e Data Parallelism — splits data across multiple GPUs, then computes in “chunks”
o Works until a single model is too big (too many parameters)

e Model Parallelism — splitting a model into multiple parts
o  Tensor Parallelism: splits the matrix multiplication to several devices
o  Pipeline Parallelism: model split into different stages, to be run on devices

e ZeRO — shards parameters across devices, but maintains simplicity



Which Technique?

Are we limited by GPU-GPU communication bandwidth?

No: DP, TP and ZeRO
Yes: PP

Goal: making pipeline parallelism more performant



Neural Networks

Forward Backward

X
v.L

w
E——— Wx wTv,L
N x 3 v,L x N
V,L VwL
do(z) z W
0(2) a7 VyL V,LxT |—>

y

VyL

Figure 1: Computation Graph for MLP.



Neural Networks (Explained)

e Forward Pass: Input — Output

e Backward Pass:
o  Gradient with respect to input — used to backprop to previous layers
o  Gradient with respect to weights — used to update the weights

e Break upthese passes, then perform pipeline parallelism



Pipeline Parallelism

Device 3

Device 2

Device 1

Device 0

Loss

ol W
F. B:
t ¥
F. B:
f i
F. B.
P R

e

Gradients

(2)

(GPIPE)

Fo B, Update

FD BO Update

Fo N B. Update

' F. Time V;\/ B. Update
(b)

Fso | Fss | Fsz| Fss| Bss | Bsz | Bss | Bso Update

F20 | F21 | F22 | Fas Bzs | B2z | B21 | B2o Update

‘Ft,o Fi1| Fiz | Fis — | Bis | Biz | B | Bio Update

e ) ‘ Bubble ‘ Boa | oz || Bor | Buo | nise
©



GPIPE's Approach to Pipeline Bubbles

e GPipe attempted to mitigate these bubbles
o Incrementing concurrent batches
o Discards (and recomputes) some intermediate activations

e Asynchronous PP allows each stage of the pipeline to process data without waiting
o Improvement over GPipe
e Synchronous setting: one-forward-one-backward (1F1B)



One Forward, One Backward (PipeDream)

Each worker alternates between performing a forward pass and a backward pass

GPUs always actively working on some part of the computation

Reduces the need to store multiple activations

Asynchronous updates between mini-batches, reducing pipeline stalls



Device 1
Device 2
Device 3
Device 4

Time

1F1B Interleaving

—

. Forward

- Backward |:, Optimizer step

Figure 2: 1F1B pipeline schedule.



ZB-H1 and ZB-H2 Schedules

Device 1

Device 2

Device 3

Device 4

Time

Device 1
Device 2

Device 3

Device 4

Time =3

M-

. B . w I:I Optimizer step

Figure 3: Handcrafted pipeline schedules, top: ZB-H1; bottom: ZB-H2



ZB-H1 and ZB-H2 Schedules

e Z/B-H1:
o Ensures max peak memory usage doesn’t exceed 1F1B
o Allworkers maintain the same number of in-flight microbatches
o Binitiated earlier, hence bubble size drops

o ZB-H2:
o Larger memory footprint than 1F1B, zero bubble schedule
o Reorder passes
o synchronization between the optimizer steps is removed here



1F1B, ZB-H1

Device 1
Device 2
Device 3
Device 4

Time

Device 1
Device 2
Device 3
Device 4

Time

Device 1
Device 2
Device 3
Device 4

Time

and ZB-H2

. Forward - Backward I: Optimizer step

Figure 2: 1F1B pipeline schedule.

—

. F . B . w I:I Optimizer step

Figure 3: Handcrafted pipeline schedules, top: ZB-H1; bottom: ZB-H2



Peak Activation Memories

M;,M,, represent the memories taken by a B/W pass
T..T, T, represent the time taken by a F/B/W pass

p represents the phases/number of pipelines

Table 2: Comparison between 1F1B and our handcrafted schedules.

Schedule Bubble size Peak activations memory
1F1B (p — 1)(TF -+ TB + Tw) pMB
ZB-H1 | (p—1)(Tr +Tp —Tw) pMp
ZB-H2 | (p—1)Tr+Tp—2Tw) (2p —1)Mp




Issues with ZB-Hx

e Cannot assume that T=T,=T,
e Thereis acommunication latency (that is ignored)

e Balancing bubble size/memory limit is challenging

Design a heuristic, and then present an ILP (Integer Linear Programming) problem



The Heuristic

e Warm-Up: Schedule as many F passes as possible before the first B pass to minimize bubbles,
staying within memory limits.

e 1F1B:Schedule 1F1B, and insert W (weight update) if a bubble is large enough.

Ensure stage i always schedules one more F than stage i+1.
After all F and B passes are done, schedule remaining W passes sequentially.



Optimizer Synchronization

e Generally requires a “barrier” for all pipeline stages
o  Makes zero bubble impossible, because of stragglers

e Most of the time the global states have no effects
e Replace the before-hand synchronizations with a post-update validation

(Similar to optimistic vs. pessimistic concurrency control)



Optimizer Synchronization

Reduce local values by
propagating from 1 to 4

Optimizer step

Propagate globally reduced
value to each stage

Rollback if validation fails

Figure 4: The post-validation strategy to replace optimizer synchronization.



Experiment Setup

e Methods: 1F1B, 1F1B-I, ZB-1p, ZB-2p
e Open-source Megatron-LM project, models analogous to GPT-3
e Specific number of iterations for profiling, collecting empirical measurement

e Upto32A100s,4 interconnected nodes, verifiable correctness

Table 3: Models and fixed settings used in experiments

Model | Layers | Attention | Hidden | Sequence | Pipelines | Microbatch Number of
Heads Size Length (GPUs) Size Microbatches

1.5B 22 24 2304 1024 8 6 24 /32764

6.2B 30 32 4096 1024 8 3 24 /32 /64
14.6B 46 40 5120 1024 16 1 48 /64 /128
28.3B 62 48 6144 1024 32 1 96 /128 /256




Main Results

5.2 MAIN RESULTS

1.5B Model, 8GPUs

6.2B Model, 8GPUs

17 5.00
S5 =N 1F18 mem ZB-lp [ upperbound | 5 A 1F18  mem ZB-lp [ upperbound
S 16 s=t 1F1B-| mem ZB-2p 5475 == 1F1B- =mm ZB-2p
5 5
3 8450
e i
S S 425
@14 g
: 2 4.00
g w3s
8 K
g12 £350
2 &

1 325

24 microbatches 32 microbatches 64 microbatches 24 microbatches 32 microbatches 64 microbatches
14.6B Model, 16GPUs 28.3B Model, 32GPUs
3 . 1F1B mmm 7B-1p [ upper bound 211 - 1F1B ®mmm ZB-1p [ upper bound
§20 s 1F1B-|  mmm ZB-2p s Wi 1F1B-  wem ZB-2p
g g
1.0
218 2
s s
S g
“ %09
216 8
g 8
8 208
E14 £
& ]

48 microbatches 64 microbatches

128 microbatches

e
<

96 microbatches

128 microbatches 256 microbatches

Figure 5: Comparison of throughput across different pipeline schedules.



Bubble Rates

Table 5: Bubble rates of 1F1B, 1F1B-1, ZB-H1, ZB-H2, ZB-1p, ZB-2p under different settings.

Model | #Stage (p) | #Microbatch (m) | 1F1B | 1F1B-I | ZB-HI | ZB-H2 | ZB-1p | ZB-2p
24 0.2431 | 0.1055 | 0.1585 | 0.1083 | 0.1585 | 0.0433
1.5B 8 32 0.1985 | 0.0818 | 0.1242 | 0.0837 | 0.1242 | 0.0039
64 0.1240 | 0.0443 | 0.0674 | 0.0444 | 0.0674 | 0.0026
24 0.2347 | 0.0808 | 0.1323 | 0.0698 | 0.1323 | 0.0029
6.2B 8 32 0.1898 | 0.0628 | 0.1045 | 0.0559 | 0.1045 | 0.0022
64 0.1091 | 0.0320 | 0.0554 | 0.0294 | 0.0554 | 0.0010
48 0.2552 | 0.1104 | 0.1397 | 0.0672 | 0.1397 | 0.0066
14.6B 16 64 0.2082 | 0.0852 | 0.1088 | 0.0516 | 0.1088 | 0.0054
128 0.1251 | 0.0445 | 0.0576 | 0.0266 | 0.0576 | 0.0028
96 0.2646 | 0.1493 | 0.1421 | 0.0641 | 0.1421 | 0.0038
28.3B 32 128 0.2168 | 0.1164 | 0.1106 | 0.0490 | 0.1106 | 0.0029
256 0.1352 | 0.0624 | 0.0594 | 0.0257 | 0.0594 | 0.0018




Motivation Behind ZB-V

e ZB-2peliminates pipeline bubbles, but 2x memory consumption.

e Minimize idle time while maintaining the same memory constraints as 1F1B.

e Divide the model into 2p chunks, assigning two chunks per worker.

e Workers are assigned chunks in a sequential manner, alternating from start to end:

o  Ensures forward and backward passes originate from the same worker.



Advantages of ZB-V

e First worker initiates backward pass without waiting, leading to quicker memory clearance.
e Uniform memory consumption across all workers.

Half the memory compared to ZB-H2.

Achieves zero bubble with memory usage equivalent to 1F1B.
o  ONLY under avery specific setting



ZB-V Bubble Rates

Table 8: Bubble rates of 1F1B, 1F1B-1, ZB-H1, ZB-H2 and ZB-V under different settings.

Model | #Stage (p) | #Microbatch (m) | 1F1B | 1F1B-1 | ZB-HI | ZB-H2 | ZB-V
48 0.2668 | 0.1499 | 0.1536 | 0.0823 | 0.0697

6.2B 16 64 0.2206 | 0.1169 | 0.1198 | 0.0630 | 0.0533
128 0.1390 | 0.0621 | 0.0637 | 0.0325 | 0.0274

12 0.2699 | 0.1519 | 0.1439 | 0.0628 | 0.0638

14.6B 24 96 0.2229 | 0.1184 | 0.1121 | 0.0480 | 0.0483
192 0.1403 | 0.0630 | 0.0595 | 0.0247 | 0.0250

96 0.2676 | 0.1509 | 0.1429 | 0.0629 | 0.0593

28.3B 32 128 0.2204 | 0.1177 | 0.1111 | 0.0478 | 0.0451
256 0.1362 | 0.0626 | 0.0593 | 0.0251 | 0.0236




Bubble Rates vs. Memory Limits

6.2B, p=16, m=48 14.6B,p=24, m=72 28.3B, p=32, m=96
0.15 4 — z8 J — z8 ] — z8
2 p4:RY zB-v zB-v
© 0.10 4 E 4
kS
8 \
2 0.05 A 1 -
0.00 L+ T ~ T ¢ T T T
6.2B, p=16, m=64 14.6B, p=24, m=96 28.3B,p=32, m=128
0.15 4 — z8 J — z8B ] — zB
2 ZB-v 7BV - 7BV
© 0.10 4 1 E
kS
Q
2 005 1 -
0.00 T T - T T T 7 T
6.2B, p =16, m =128 14.6B, p=24, m =192 28.3B, p=32, m=256
0.15 4 — 78 J — 7B ] — 78
- ZB-v zB-v ZB-v
© 0.10 A 4 -
3
Q
2 0.051 . \ ]
0.00 L— : . — . . . : .
1.0pMg 2.0pMp 3.0pM51.00Mp 2.0pMg 3.0pM51.0pMg 2.0pMg 3.0pMs
Miimit Miimie Miimit

Figure 9: The relation between memory limit and bubble rate for ZB-V, compared with the heuristic
method in Section 3.1.



Thoughts

Very strong work

e Innovative approach to reduce pipeline bubbles without significant memory increase (ZB-p1).
e Outperforms 1F1B and GPipe, but ZB-H2 has a higher memory footprint
e ZB-Vis VERY impactful, does a great job limiting bubbles

e Would be valuable to integrate multiple parallelism methods, do we see speedup?



Thanks for Listening!

Any questions?



