
Zero Bubble Pipeline Parallelism

Penghui Qi, Xinyi Wan, Guangxing Huang, Min Lin

(Paper Presented by Aydan Pirani)

Parallelism Techniques

● Training large models often requires a vast amount of interconnected GPUs

● Data Parallelism → splits data across multiple GPUs, then computes in “chunks”

○ Works until a single model is too big (too many parameters)

● Model Parallelism → splitting a model into multiple parts
○ Tensor Parallelism: splits the matrix multiplication to several devices

○ Pipeline Parallelism: model split into different stages, to be run on devices

● ZeRO → shards parameters across devices, but maintains simplicity

Which Technique?

● Are we limited by GPU-GPU communication bandwidth?

● No: DP, TP and ZeRO

● Yes: PP

● Goal: making pipeline parallelism more performant

Neural Networks

Neural Networks (Explained)

● Forward Pass: Input → Output

● Backward Pass:
○ Gradient with respect to input → used to backprop to previous layers

○ Gradient with respect to weights → used to update the weights

● Break up these passes, then perform pipeline parallelism

Pipeline Parallelism

(GPIPE)

● GPipe attempted to mitigate these bubbles
○ Incrementing concurrent batches

○ Discards (and recomputes) some intermediate activations

● Asynchronous PP allows each stage of the pipeline to process data without waiting
○ Improvement over GPipe

● Synchronous setting: one-forward-one-backward (1F1B)

GPIPE’s Approach to Pipeline Bubbles

One Forward, One Backward (PipeDream)

● Each worker alternates between performing a forward pass and a backward pass

● GPUs always actively working on some part of the computation

● Reduces the need to store multiple activations

● Asynchronous updates between mini-batches, reducing pipeline stalls

1F1B Interleaving

ZB-H1 and ZB-H2 Schedules

ZB-H1 and ZB-H2 Schedules

● ZB-H1:
○ Ensures max peak memory usage doesn’t exceed 1F1B
○ All workers maintain the same number of in-flight microbatches
○ B initiated earlier, hence bubble size drops

● ZB-H2:
○ Larger memory footprint than 1F1B, zero bubble schedule
○ Reorder passes
○ synchronization between the optimizer steps is removed here

1F1B, ZB-H1 and ZB-H2

M
B

,M
W

 represent the memories taken by a B/W pass

T
F

,T
B

, T
W

 represent the time taken by a F/B/W pass

p represents the phases/number of pipelines

Peak Activation Memories

● Cannot assume that T
F

= T
B

 = T
W

● There is a communication latency (that is ignored)

● Balancing bubble size/memory limit is challenging

Design a heuristic, and then present an ILP (Integer Linear Programming) problem

Issues with ZB-Hx

The Heuristic

● Warm-Up: Schedule as many F passes as possible before the first B pass to minimize bubbles,

staying within memory limits.

● 1F1B: Schedule 1F1B, and insert W (weight update) if a bubble is large enough.

● Ensure stage i always schedules one more F than stage i+1.

● After all F and B passes are done, schedule remaining W passes sequentially.

Optimizer Synchronization

● Generally requires a “barrier” for all pipeline stages
○ Makes zero bubble impossible, because of stragglers

● Most of the time the global states have no effects
● Replace the before-hand synchronizations with a post-update validation

(Similar to optimistic vs. pessimistic concurrency control)

Optimizer Synchronization

Experiment Setup

● Methods: 1F1B, 1F1B-I, ZB-1p, ZB-2p

● Open-source Megatron-LM project, models analogous to GPT-3

● Specific number of iterations for profiling, collecting empirical measurement

● Up to 32 A100s, 4 interconnected nodes, verifiable correctness

Main Results

Bubble Rates

Motivation Behind ZB-V

● ZB-2p eliminates pipeline bubbles, but 2x memory consumption.

● Minimize idle time while maintaining the same memory constraints as 1F1B.

● Divide the model into 2p chunks, assigning two chunks per worker.

● Workers are assigned chunks in a sequential manner, alternating from start to end:
○ Ensures forward and backward passes originate from the same worker.

Advantages of ZB-V

● First worker initiates backward pass without waiting, leading to quicker memory clearance.

● Uniform memory consumption across all workers.

● Half the memory compared to ZB-H2.

● Achieves zero bubble with memory usage equivalent to 1F1B.
○ ONLY under a very specific setting

ZB-V Bubble Rates

Bubble Rates vs. Memory Limits

Thoughts

● Very strong work

● Innovative approach to reduce pipeline bubbles without significant memory increase (ZB-p1).
● Outperforms 1F1B and GPipe, but ZB-H2 has a higher memory footprint
● ZB-V is VERY impactful, does a great job limiting bubbles

● Would be valuable to integrate multiple parallelism methods, do we see speedup?

Thanks for Listening!

Any questions?

